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1. Published estimates of observed Ocean Heat Content
(OHC) change

There are many analyses that have examined and discussed changes to long-term ocean
heat content over the observed period (mid-20™" century to the present). Such studies
include contributions from AchutaRao et al. (2006, 2007), Barnett et al. (2001, 2005),
Church et al. (2004, 2011), Domingues et al. (2008), Ishii et al. (2003, 2006), Ishii &
Kimoto (2009), Gleckler et al. (2012), Good et al. (2013), Gouretski et al. (2012), Harrison
& Carson (2007), Levitus et al. (2000, 2005, 2009, 2012), Lyman & Johnson (2008, 2014),
Marcos & Amores (2014), Palmer et al. (2007, 2009), Pierce et al. (2006, 2012) and
Smith & Murphy (2007) amongst others. A number of other studies have generated
analyses over the more recent period (Boening et al., 2012; Lyman et al., 2010; Johnson
et al., 2013; Willis et al., 2004; von Schuckmann & Le Traon, 2011), however we do not
discuss these here.

Due to the spatial and temporal sparsity of the observed data, these studies have
considered two key approaches to generating global estimates:

Spatially incomplete “representative global average” analysis

A subsampled (or spatially incomplete) analysis attempts to generate a “representative
global average” by using existing observations and extrapolating an area-weighted
sample average over unsampled regions. Importantly this technique leads to a global
ocean sampled volume that varies with time, and a key assumption is that the ocean
heat content (OHC) in unsampled regions (most of the Southern Hemisphere [SH]) is
changing at the same rate as the sampled regions. The Palmer et al. (2007) study is an
example of a “representative global average” analysis, and we present some example
results over four years (1970, 1980, 1990, 2000) for which a “representative global
average” infilling was undertaken (Figure S1). It is clear that for the four years plotted,
almost all “representative global average” information is obtained from the North
Atlantic and northwestern Pacific regions and this data is used to infill most of the SH,
where only few observations exist. This implies that the “representative global average”
approach is not appropriate to investigate OHC change partitioning between
hemispheres.

Spatially complete “infilled” analysis

Analyses that follow a spatially complete approach use various methods to infill regions
where available observations do not provide coverage. One of the more common
methods employed is objective analysis (e.g. Levitus, 1982, 1984; Ishii et al., 2003. 2005)
which constructs either climatological annual, seasonal or monthly mean gridded fields.
A disadvantage of these analyses is that where observations do not provide coverage,
“infilled” climatological values or zero anomaly values are used. A number of studies
have noted that such “infilled” analyses tend to underestimate changes in poorly
sampled regions (Gille, 2002, 2008; Gregory et al., 2004; Gouretski & Koltermann, 2007)
or may underestimate inherent climate variability (Harrison & Carson, 2007).
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More recent estimates (Domingues et al., 2008; Lyman & Johnson, 2008, 2014) have
attempted to address the poor spatio-temporal coverage by relying on the coincident
sea surface height (SSH) estimates along with the Argo array, that both provide near
global coverage over the more modern period. In the case of Durack & Wijffels (2010)
these estimates depend on the modern Argo period to reduce seasonal and spatial
sampling biases in the historical archive, and make the assumption that the Argo period
is a valid representation of the global ocean’s spatial structure and seasonal cycle for the
historical period.

As a consequence of these optimisations, the newer analyses tend to provide larger
magnitudes of change, particularly for the poorly sampled regions. The 4 “infilled”
analyses assessed in this study for which maps are available are presented in Figure S2a,
for reference multi-model mean (MMM) results from the CMIP3 and CMIP5
experiments are presented in Figure S2b.

A detailed overview of ocean temperature observations, with a key focus on expendable
bathythermograph (XBT) bias corrections is provided in Abraham et al. (2013). To date,
there have been a number of studies published on addressing fall-rate and temperature
bias corrections for XBT and Mechanical BathyThermograph (MBT) temperature
observing platforms, and include contributions from Wijffels et al. (2008), Gouretski &
Reseghetti (2010), Good (2011), Hamon et al. (2012), Gouretski (2012) and Cowley et al.
(2013).

A very recent study by Cheng & Zhu (2014) has highlighted a new source of uncertainty
relevant to observed estimates of OHC change. Their study considered historical
observations, and found that due to the poor vertical resolution of these data complex
vertical and geographical temperature biases are likely. They concluded that the 0 - 700
m OHC is likely biased high, however geographically this bias is complex, with positive
values between 30°S — 30°N and a cold bias at higher latitudes in both hemispheres,
which is sensitive to the shape (concave or convex) of the vertical temperature profile.

Such new insights, along with the hemispheric heat partitioning constraint which is the
focus of the current work, will need to be considered by future analyses which aim to
construct improved estimates of global OHC change.
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FIG. S1. Annual mean temperature maps (units are degrees Celsius) obtained across the 12
months for target years A) 1970, B) 1980, C) 1990 and D) 2000 using the “representative
average” methodology of Palmer et al. (2007). For each year of available gridded data noted
above, a representative annual mean is calculated by averaging all available monthly values to
yield an annual mean value. From this incomplete annual mean field a “representative global
average” is calculated using area-weights from the observational grid, and then for each
unobserved grid point the “representative global average” is inserted. Stippling denotes regions
where the “representative global average” has been used to replace a missing value in the
original gridded data. We note that for each of the selected years, Northern Hemisphere (NH)
values dominate the “representative global average” and that there is very little Southern
Hemisphere (SH) representative information available.
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FIG. S2a. 35-year trends in ocean heat content for the upper 0-700 dbar with the global mean included (A1-E1; top row), and with the global
mean removed (A2-E2; bottom row). Units are J x 10% kg 35yrs™ (4 =~ depth-averaged warming of 1°C 35yrs™) Observational maps show the
results from Smith & Murphy (2007; 1970-2004, A), Ishii & Kimoto (2009; 1970-2004, B), Levitus et al. (2012; 1970-2004, C), Durack & Wijffels
(2010; 1970-2008 — scaled to represent 35yrs?, D) and the CMIP5 historical multi-model mean (MMM; 1970-2004, E). Stippling is used to mark
regions where the 4 observational estimates do not agree in their sign (A, B, C, D) and where less than 75% of CMIP5 models do not agree in sign
with the averaged map obtained from the ensemble (E). See Figure S1b for each independent CMIP experiment MMM result.
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FIG. S2b. 35-year trends in ocean heat content for the upper 0-700 dbar with the global mean included (top and third rows), and with the global
mean removed (second and bottom rows). Units are J x 10% kg 35yrs? (4 =~ depth-averaged warming of 1°C 35yrs*). Multi-model mean (MMM)
maps show the results from CMIP3 20c3m (A — 1970-1999 scaled to represent 35yrst), CMIP3 SRESB1 (B — 2065-2099), CMIP3 SRESA1B (C —
2065-2099), CMIP3 SRESA2 (D — 2065-2099), CMIP5 historical (E — 1970-2004), CMIP5 RCP26 (F — 2065-2099), CMIP5 RCP45 (G — 2065-2099),
CMIP5 RCP60 (H — 2065-2099) and CMIP5 RCP85 (I — 2065-2099). Following Figure S2a, panels denoted “1” show the absolute result (e.g. Al)
whereas panels denoted “2” show maps with the area-weighted global mean removed (e.g. A2). Stippling is used to mark regions where less
than 75% of CMIP models do not agree in sign with the averaged map obtained from each ensemble (A-1).
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2. Global ocean ventilation — observations and models

The rate of observed ocean ventilation (transport of surface waters leaving the surface
formation site moving into the ocean interior) can strongly affect estimates of long-term
OHC change. However, long-term data coverage is insufficient to constrain OHC trends,
let alone the highly temporally variable ocean ventilation. Additionally, it is likely that
observed ocean ventilation rates are not static over the 1970 to 2004 period of analysis
(Waugh et al., 2013), and may be trending upwards due to wind changes in some
regions (Abram et al., 2014).

Ocean ventilation is a difficult process to quantify, as ventilation is a response to
dynamical ocean processes affected by ocean stratification, mixed-layer dynamics,
vertical diffusion, convection, eddy-flux and surface ocean fluxes along with responses
to windstress forcing (e.g. Bryan et al., 2006; Downes et al., 2010; Capotondi et al.,
2012; Downes & Hogg, 2013; Morrison et al., 2013; Salleé et al., 2013).

In models, many of these processes are parameterized as they occur at sub-grid spatial
scales. This simplification is necessary to allow models to simulate the complete global
ocean. In practice, due to poor temporal and spatial observational coverage,
oceanographers attempt to quantify ocean ventilation using anthropogenic transient
tracers, for which a well-known time history is available. Chlorofluorocarbons (CFCs) are
such a common tracer, and are particularly useful due to the chemical- and biological-
inert nature of the CFC-11 and CFC-12 species (Bullister, 1989; Bullister & Tanhua, 2010).
These tracers are well mixed in the atmosphere for both hemispheres (Figure S3).
Spatial maps showing CFC-11 inventories for the ocean (Figure S3), in response to ocean
ventilation, qualitatively agree with the key regions of ocean heat uptake (Southern
Ocean and North Atlantic) in the Southern Ocean and North Atlantic as captured in
models (Figure S2b) and the sparse observations (Figure S2a).
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FIG. S3. The historical atmospheric timeseries and time-integrated oceanic concentrations of
chlorofluorocarbon-11 (CFC-11; Bullister, 2014). (A) CFC-11 atmospheric mole fraction in both
hemispheres. Mapped vertically integrated ocean CFC-11 concentrations for (B) observations (0-
depth of deepest samples) and (C) for a representative ensemble mean from CMIP5 (4 models;
0-full depth). Concentrations are shown for the representative year 1994 (the median year of
observational data) and the 1994 annual mean (from monthly data) concentrations from
available CMIP5 models. Units are moles/km?, highest values are red, lowest are blue.
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A number of studies have compared inferred ocean ventilation rates between models
and observations (e.g. Dixon et al., 1996; Dutay et al., 2002; Danabasoglu et al., 2009;
Shao et al., 2013). These studies suggest that a qualitative agreement exists between
modelled and observed CFC-11 uptake for the global ocean, however there is a large
range (£30%) in the resolved global inventory in models, which was attributed to
differences in high latitude ocean ventilation (Dutay et al., 2002). The Dutay et al. (2002)
study focused on the CMIP2-generation (Meehl et al., 2000) models, which contributed
to the Ocean Carbon-cycle Model Intercomparison Project (OCMIP). This study found
the largest discrepancies between modelled and observed CFC concentrations, were
located in the high latitudes and were sensitive to subgrid-scale parameterizations,
along with isopycnal diffusion and eddy-induced velocity parameterizations.

When comparing the CMIP2 and CMIP5 model suites, large improvements to simulation
realism have been achieved (e.g. Flato et al., 2013) by addressing the sensitivities noted
above, and increasing horizontal and vertical resolution. It is anticipated that such
model improvements would lead to a more realistic ocean ventilation simulation when
compared to observed estimates, and as seen in Figure S3. The sub-suite of the CMIP5
models which provide CFC-11 concentration data (CESM1-CAM5, GFDL-CM3, GFDL-
ESM2G, NorESM1-ME) replicate observed spatial patterns well (contrast Figure S3B
versus C). The Southern Hemisphere (SH) fractional contribution to the global upper
OHC expressed by this subset range from 0.46 to 0.63, with a multi-model mean (MMM)
of 0.57 and so these four models provide a very representative subset of the full suite
shown in Figure 4 (MMM = 0.59). This result suggests that the ventilation locations and
rates in CMIP5 Historical models are realistic.

3. Total steric change and sea surface height

Observed sea surface height (SSH) from highly accurate satellite-based altimeters have
been used to inform spatial infilling of ocean heat content anomaly (OHCA) and
thermosteric sea-level estimates in previous works (Church et al., 2004; Domingues et
al., 2008) or to provide insights into uncertainty estimates (Lyman & Johnson, 2008,
2014). These studies leverage off the strong correspondence between full-depth steric
changes and the resultant SSH, as well as the near global, high spatio-temporal
resolution of continuous SSH measurements since late 1992.

To validate our analysis and corroborate our approach of considering numerous
observed and modelled quantities, we investigated the correspondence between large-
scale integrated estimates of OHC change, and both thermosteric and total
(thermosteric and halosteric) steric ocean responses. Due to the limitation of SSH
observations (not available before October 1992), these comparisons were undertaken
only within the CMIP5 model suite over the 35-year period of assessment and are
shown in Figure S4.
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FIG. S4. Comparison of integrated quantities obtained from 35-year trends of ocean heat
content (OHC) changes contrasted with (A, B, C) 0-700 dbar thermosteric anomalies, (D, E, F) O-
700 dbar total (thermosteric and halosteric) steric anomalies and (G, H, 1) O-full depth total steric
anomalies in available CMIP5 Historical simulations. We note the O-full depth quantities are not
drift-corrected. When drift-correction is undertaken correlations improve to 0.98, 0.95 and 0.83
for panels G, H and | respectively (see Figure 2D, E, F). 9 simulations from the GISS model suite
were removed from the analysis presented in panels G, H, | due to spuriously large deep ocean
heating (global integral > 102 J); these issues are normally resolved by drift-correction as
undertaken in Figure 2 (panels D-F).

Following previous studies (Church et al., 2004; Domingues et al., 2008; Lyman &
Johnson, 2008, 2014), we use near-global SSH observations alongside modelled
estimates to investigate consistency on hemispheric-scales between observed and
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modelled long-term OHC. Modelled estimates of global mean sea-level change over the
historical period have been shown to be equivalent to observed estimates when
considerations for excluded land-ice contributions are taken into account (Church et al.,
2013). The spatial correspondence between these quantities is captured well in the
CMIP5 models (also shown for integrated global and hemispheric totals in Figure S4),
and we show maps of the various simulated vertical components of OHC (0-700 dbar
and O-full depth) along with the total steric anomaly (calculated from temperature and
salinity fields) and modelled SSH (CMIP5 variable “Z0S”, sea surface height above geoid)
in Figure S5.
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0-700 dbar and B) O-full depth ocean, C) O-full depth total steric sea level (global mean removed)
and D) sea surface height (SSH/CMIP5 variable ZOS; global mean removed).

We find a very high correlation between modelled SSH (global mean removed) and
steric height (global mean removed) derived from modelled salinity and temperature
fields. Discrepancies between our derived total steric fields and the model SSH fields
(lower panels Figure S5) can be attributed to differing versions of the equation of state
used across the models. Additionally, SSH reflects the full ocean depth, rather than the
more focused 0-700 dbar analyses that are most common (see Supplemental Section 1),
and consequently, deep ocean drifts can influence results (see discussion in Section 7).
The MMM spatial correlation between total steric anomalies and SSH is 0.92; However,
this number is calculated by excluding the GISS models, which show poor spatial
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correlations of ~0.5 rather than the 0.89-0.99 shown from other models contributing to
CMIP5.

The linear relationships and strong correlations shown in Figures 2, S4 and S5 support
our rationale to use SSH, or — more specifically — rates of hemispheric sea-level changes,
as a proxy from which to adjust SH OHC change estimates through the use of
hemispheric ratios.

Sea surface height trends — observations and CMIP5 simulations

The SSH trend pattern observed over the last 20 years (1993 — 2012) features a
prominent East-West dipole structure in the tropical Pacific Ocean (Figure S6). Much of
this pattern has been attributed to internally forced interannual to decadal climate
variability, mostly related to ENSO (interannual) and PDO-like (decadal) variability (e.g.,
Meyssignac et al., 2012; Zhang & Church, 2012). Similarly, Hu & Deser (2013) have
shown in CMIP5-type forced 21° century simulations, that internal variability will likely
dominate the regional SSH trend pattern over many regions for the next 40-50 years,
after which a forced global mean rise tends to emerge from the variability. However,
they also show that the global mean OHC change varied only minimally between
simulations in their 40-member ensemble. While this latter point was shown for the
global mean, we posit here that it also holds over hemispheric averages, but it will break
down at smaller regional scales due to the increasing dominating effect of internal
variability that masks any externally forced SSH-trend mode.

Based on these previous findings and the uninitialised configuration of CMIP5 historical
simulations, it is expected that the observed simulated SSH regional 20-year trend
patterns (Fig S6A; global mean subtracted) would not likely be replicated by the CMIP5
MMM. This is indeed the case when we compare the single observed realization (Figure
S6A) against the MMM 20-year trend (Figure S6B). While the time periods of the 20-year
trends in Figure S6 only partially overlap (A: 1993-2012 vs B: 1985-2004), the
conclusions are not sensitive to the particular choice of time period (Hu & Deser, 2013).
The strong tropical Pacific di-pole signal in observed SSH trends is largely absent in the
CMIP5 MMM. Although observed and simulated 20-year SSH trends agree in sign in
some regions (Figure S6), we note that all grid points in the MMM SSH 20-year trend
pattern have uncertainties that are larger than the trends themselves (stippled regions
where less than 75% of models agree with the sign of the MMM trend). However, CMIP
models are capable of reproducing the observed 20-year trend patterns in the Pacific (as
demonstrated in Meyssignac et al., 2012), but not in phase with observations due to the
uninitialised configuration. Therefore, we stress again that a lack of strong agreement
between the CMIP5 MMM and AVISO SSH trend patterns over a specific time period
(such as 1993-2012 or 1985-2004) is entirely expected, and is not a measure of model
performance. It is pertinent to distinguish between the ability of a model to simulate a
long-term warming trend, and the ability of a model to match observed changes —in
particular when the period of comparison is relatively short (i.e. internal variability tends
to “mask” the long-term, externally forced trend).
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While the phasing of non-synchronised internal variability limits a direct comparison of
sea-level change patterns between CMIP simulations and observations, the comparison
of hemispheric ratios of these rates circumvents this problem. Effectively, the ratios (as
shown in Figure 3) normalize each hemispheric trend estimate by the global mean (sea
level rise or OHC), and — in combination with spatial averaging — eliminate the phase-
dimension from the comparison. The agreement of hemispheric SSH trend ratios among
the CMIP models (Figure 3A, C) indicates that a common limit on hemispheric sea-level
partitioning exists, irrespective of the presence of different internal variability in each
model for the particular time period assessed. Therefore, we argue that because (1) the
models’ hemispheric SSH ratios agree with the observed ratios, and (2) the close
correspondence between OHC and SSH at hemispheric and global scales exists (Figure 2,
S4), the model-derived OHC hemispheric ratios can be used to adjust the poorly
constrained observed Southern Hemisphere OHC change estimates.
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FIG. S6. 20-year trends (global mean subtracted) in A) AVISO SSH (1993-2012) and the B) CMIP5
Historical MMM (1985-2004); units are mm yr. In B) the stippling indicates where less than 75%
of models agree in the sign of the MMM — and that for almost all regional trends the uncertainty
(largely due to internal variability) is larger than the MMM trend.
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4. Signal and noise across CMIP5 experiments — unforced
internal variability

Quantifying the role of unforced variability is an important aspect when considering
long-term changes to OHC. We compare spatial pattern correlations (PCs) between the
four observational OHC change estimates for which maps were available (Figure S2a),
each model from the CMIP5 Historical experiment, and the most strongly forced future
experiment (RCP85). The low correlations for any single model realisation (Figure S7: red
diamonds) or a single model ensemble average compared to observations (Figure S7:
grey bars) can result from observational deficiencies, structural errors/biases in the
models, and sampling uncertainties associated with unforced internal climate variability.
We estimate the importance of unforced internal climate variability by computing the
PCs between pairs of Historical simulations from single models (Figure S7A, black
diamonds). These PCs range from -0.34 to 0.73 (MMM of 0.31) suggesting that internal
variability is large and plays an important role. The importance of internal variability is
reduced in the RCP85-forced 21t century experiments because the externally forced
response is significantly larger than those in Historical simulations (see Figure S2b). In
these RCP85 simulations, the spatial patterns are more consistent across a single
model’s ensemble of simulations, with PCs that range from 0.41 to 0.97 (Figure 2B: black
diamonds; MMM of 0.75). The fact that the more strongly forced RCP85 projections
correlate better with the observations than the Historical simulations suggests a
stationary, and increasingly evident model fingerprint of forced change (Figure S7A/B
horizontal red [0.12 versus 0.21] and grey [0.15 versus 0.22] lines). Despite the
obscuring role played by internal variability, the PCs are generally higher between pairs
of model simulations than between models and observations (Figure S7A/B black line
and red lines), even for Historical simulations. Overall, consistently low PCs in the
Historical experiments imply that even with model improvements and large ensembles,
increasing confidence in regional-scale projections of OHC continues to be a challenge.

Keeping in mind the deficiency of SH sampling, we further compare the observations
and the Historical MMM by considering correlations for the NH and SH separately
(Figure S7C & D). NH correlations are considerably higher, with an average inter-
observation value of 0.68 compared to a SH value of 0.44 (Figure S7C & D; horizontal
grey lines). This reflects the weak observational constraint due to poor data coverage in
the SH, with infilling methods leading to pattern differences between the observational
data sets. These results provide a motivation to further investigate the dissimilarity, and
contrast the model-simulated and observed hemispheric partitioning of OHC changes.

The DW10 analysis was selected as the observed baseline, as it consistently obtained
the highest mean PC compared to the MMM (Figure S7). We note the Smi07 analysis
provided similar PC values. Qualitative investigations with the Ish09 and Lev12 analyses
were undertaken and the larger PC of DW10 was attributed to its higher SH values (of
similar magnitude to NH values). In these other analyses, equivalent PC values to DW10
were obtained when their Southern Hemisphere trends were artificially enhanced by
50%.
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332 FIG. S7. Pattern correlation (PC) between 35-year trends maps of 0-700 dbar ocean heat content for 4 observational

333 estimates (numbers 1-4), the CMIP5 multi-model mean (MMM; 5), and each of the available CMIP5 models (6-47) for the
334 Historical 1970-2004 (A) and RCP85 2065-2099 (B) experiments (grey bars). The DW10 analysis (3) is the reference to

335 which each of the observed analyses and model simulations is compared, as it consistently showed the highest mean PC
336  compared to the MMM (5; panel A & B). Red diamonds indicate the PC between independent model simulations (i.e.

337 rlilp1) against observations, and black diamonds indicate the PC between pairs of model simulations within the model
338  suite (i.e. rlilpl1 vs r2ilp1). The grey horizontal line expresses the average MMM PC value for each independent model
339 ensemble (6-47; grey bars), the red horizontal line shows the weighted (each model equally contributes to the mean

340 regardless of the number of simulations) MMM PC value for each independent model realisation (6-47; mean of red

341 diamonds) and the black line expresses the MMM PC value from within the model suite (6-47; mean of black diamonds). A
342 listing of models is contained in Table S1. Lower panels C & D express the Hemispheric inter-observation PC for each of the
343 4 observational estimates (Smith & Murphy [2007: 1] on the left hand side and Levitus et al. [2012: 4] on the right hand
344  side; See Table S1) and the CMIP5 Historical MMM for the Northern (C) and Southern Hemisphere (D) respectively. The
345 grey horizontal line expresses the average observational PC value across each independent observational combination
346  (grey bars), excluding self-correlation (values of 1) and the CMIP5 Historical MMM.
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5. Full CMIP ensemble supporting analysis

We investigate hemispheric ocean warming ratios in all CMIP3 and CMIP5 simulations to
evaluate the role of forcing uncertainties and finite simulation samples. To achieve this
we considered the full suite of results across 9 CMIP experiments (CMIP3: 20c3m,
SRESA1B, SRESA2 & SRESB1; CMIP5: Historical, RCP26, RCP45, RCP60 & RCP85). The
following results consider each independent simulation equally (in contrast to summary
figures within the main text which have considered independent model ensemble
means: averaging each available realisation for each independent model to provide a
single model result), and consequently model pathologies, errors and biases present in
single simulations affect the following results.

We find that the full ensemble results support those obtained in the main text, however
these yield larger uncertainties due to outlier single simulations (we exclude any
simulations that are outside the 99.9% confidence interval of the full 641 realisation
suite in calculations, which reduces the realisation count to 633). We also find that the
spread of results is larger in the more weakly forced simulations (SRESB1, RCP26, RCP45)
and are even greater in simulations that include natural forcings such as volcanoes
(20c3m, Historical). In contrast to results presented in Figure 4, the MMM averages of
the SH versus the global mean OHC ratio for the full suite lie at 0.55 and 0.58 for the
20c3m/Historical composite (Figure S8).
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FIG. S8. Southern Hemisphere versus global 35-year OHC change as obtained from a large suite
of available 20 and early 21° century dark grey and 20" and 21% century light grey simulations
and 5 independent observational estimates of Smith & Murphy (2007; light blue diamond),
Domingues et al. (2008; green diamond), Ishii & Kimoto (2009; red diamond), Durack & Wijffels
(2010; black diamond) and Levitus et al. (2012; dark blue diamond). The full model distribution
as expressed from 633 independent CMIP3 (20c3m, SRESB1, SRESA1B, SRESA2) and CMIP5
(Historical, RCP26, RCP45, RCP60, RCP85) simulations is expressed in light grey, and 222 20*" and
early 21 century 20c3m (CMIP3) and Historical (CMIP5) simulations (dark grey) that can be
directly compared to observations. Horizontal black lines represent each of the CMIP
experiments showing the multi-model mean (MMM; small black diamonds) and 1 standard
deviation around the MMM (horizontal black line). Vertical white lines denote the ensemble
mean for the full ensemble (light grey) and 20c3m/historical ensemble (dark grey) respectively.
We note that all simulations (rather than single model-ensemble means) are used, which
contrasts with the approach taken in Figure 4 and provides larger uncertainties.
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diamond) and Levitus et al. (2012; dark blue diamond).
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6. Data sources

Models

The model data used in this study is a combination of data contributed to the CMIP5
(Taylor et al., 2012) and CMIP3 (Meehl et al., 2007) archives that represent the state of
the art in coupled climate modelling for 2011 and 2005 respectively. The CMIP5
experiments analysed include: Historical (1970-2004; 42 models), RCP26, RCP45, RCP60
and RCP85 (2065-2099). The CMIP3 experiments analysed include: 20c3m (1970-1999;
23 models), SRESB1, SRESA1B and SRESA2 (2065-2099). Specific details on the model
simulations are contained in Tables S1 (CMIP5) and S2 (CMIP3). The anthropogenic
forcing information is detailed in Meinshausen et al. (2011: CMIP5) and Naki¢enovi¢ and
Swart (2000: CMIP3) with natural forcings for CMIP5 described in Vernier et al. (2011),
Driscoll et al. (2012), Schmidt et al. (2012) and Eyring et al. (2013). Improvements in
ocean simulation when comparing CMIP3 to CMIP5 include: increased model resolution,
both in horizontal and vertical grids, along with better eddy parameterisations focusing
on improving eddy fluxes and diffusivity (Flato et al., 2013). An investigation of inter-
model forcing differences and uncertainties for the CMIP5 model suite has been
documented by Forster et al. (2013).

Observational OHC data

We use five observational analyses of long-term ocean temperature changes, from
which the key observed ocean temperature change conclusions in the latest release of
the IPCC Fifth Assessment Report (AR5) were made (Rhein et al., 2013). These analyses
are selected as they provide the most comprehensive assessment of different estimates
of temperature changes, using differing methodologies, XBT bias correction schemes
and their inherent assumptions (Abraham et al., 2013).

The Palmer et al. (2007) analysis was excluded, as their technique does not provide
infilled spatial maps, with their heat content timeseries dependent on the assumption
that unsampled regions warm at the global average rate and for this reason could not
be directly compared to other infilled products (see Supplemental Section 1).

The analysis of Smith & Murphy (2007; Smi07) uses covariances obtained from a
coupled global climate model (HadCM3) to guide an optimal interpolation of monthly
subsurface ocean temperature and salinity data from 1950 to 2013. The Domingues et
al. (2008; Dom08) analysis uses a reduced-space optimal interpolation technique, which
is optimized to recover broad-scale patterns from sparse spatial data from 1950 to 2008.
The Dom08 gridded analysis was not available, however for this study we have used the
basin results as presented in Gleckler et al. (2012). The analyses of Ishii & Kimoto (2009,
updated v6.13; Ish09) and Levitus et al. (2012; Lev12) use an objective-mapping
technique to generate annual mean gridded temperature maps for the period 1945-
2012 and 1955-2012 respectively. For the Lev12 analysis, we used the corresponding
temperature and salinity climatology from the World Ocean Atlas 2009 (WOAQ9). The
analysis of Durack & Wijffels (2010; DW10) uses a spatial and temporal parametric
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model, optimized to recover the broad-scale ocean mean structure, the annual and
semi-annual cycle (and their spatial gradients) and the multidecadal linear trends from
the sparse hydrographic database (salinity and temperature profiles from bottles, CTDs
and Argo) over 1950-2008, a dataset free of known biases. A key advantage of the
DW10 analysis is the exclusion of XBT profile data (the original analysis was generated to
ascertain long-term salinity changes), which have been isolated as the source of the
biases in the thermal archive (Gouretski & Koltermann, 2007), although the exclusion of
XBT data is also a disadvantage with less than half the profiles contained in the thermal
archive (no salinity) alone (also see Section 1).

Observational SSH data

We use the monthly gridded AVISO reference sea surface height (SSH/MSLA) data
(Ducet et al., 2000), which is a merged satellite product that homogenises data from the
Topex/Poseidon, Envisat, Jason-1 and Jason-2 satellites. For the analysis of 20-year
trends, we use the data span from January 1993 through December 2012, and regridded
the AVISO fields onto a regular 1 x 1 degree (longitude, latitude) grid. To compute
spatial averages, we use the same land-sea mask as the CMIP ensemble.

7. Data preparation and analysis

For all model data and observational estimates for which monthly gridded data was
available (Smi07, Ish09, AVISO), annual means were first generated.

Ocean heat content maps

For all data series a linear least-squares trend and climatology was calculated at each
grid cell for 1970-2004 on the native observed analysis or model grid. For DW10, spatial
maps presenting the linear trend and climatology over 1970-2008 were generated. All
trend maps and climatologies were then interpolated to a 2 x 1 (longitude, latitude)
degree grid extending from 70°S to 70°N which excludes marginal seas (Mediterranean
Sea, Baltic Sea, Red Sea, Persian Gulf, China Seas, Sea of Japan, Java Sea, Banda Sea and
Arafura Sea) and vertically interpolated to 18 standard pressure levels (5, 10, 20, 30, 40,
50, 75, 100, 125, 150, 200, 300, 500, 700, 1000, 1500, 1800, 2000 dbar) for direct
comparison. To compare observations and models fairly (which have differing land-sea
masks), after interpolation of results to the target grid an iterative nearest neighbour
infilling algorithm was employed to infill regions so that the land-sea masks of all
analyses were identical. Heat content anomalies are calculated using observed or
modelled temperature, salinity and pressure along with derived specific heat capacity
and in-situ density which are calculated from the corresponding climatological mean.
Interpolated maps provide results presented in Figures 1-2, 4-5, S2a, S2b, S4, S5, S6, S7,
S8, S9, S10 and S11.

Ocean heat content timeseries

We used annual means of the sea water potential temperature (‘THETAQ’) fields from
CMIP5 Historical simulations to analyse and compare hemispheric ocean heat content
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(OHC) trends against the 4 observed estimates of OHC change. The processing steps

taken to analyse these fields involved:

1. Integrating each annual modelled ‘THETAQ’ or observed temperature field over
depths from 0-700 m using the native model or observational vertical coordinate
(upper most grid cell to 700 m). When integrating over depth, each value is
weighted by the cell depth so a depth-weighted value is obtained for each grid cell.

2. Integrating horizontally for the Southern Hemisphere (SH) and Northern Hemisphere
(NH) separately using the native model or observational horizontal grid. When
summing over grid cells, each value is weighted by the cell area so an area-weighted
value is obtained for each grid cell. This calculation yields a quantity proportional to
heat content for each hemisphere.

3. From the hemispheric OHC timeseries; calculating linear least-square trends of
length 1 - 35 years for models and 1 to 43 years for observations, starting in 1971
and contained in the 1971 — 2004 interval for models (2012 for observations)

4. Calculating the trend ratio for OHC trends, SH to global (i.e. SH/(NH+SH))

5. Plotting observed and MMM ratios as a function of trend length, and also plotting
the 1 standard deviation spread across models

Hemispheric OHC timeseries provide results presented in Figure 3B, D.

Sea surface height

We used annual means of the ‘ZOS’ (dynamic sea surface height above geoid) and
‘ZOSTOGA'’ (global average thermosteric sea level change) fields from CMIP5 Historical
simulations to analyse and compare hemispheric SSH trends against the AVISO satellite
altimetry observations. The processing steps taken to analyse these fields involved:

1. The global mean at each timestep of the ‘ZOS’ fields is zero, in accordance with the
model definition of dynamic SSH; all ‘Z0OS’ fields were regridded to a 1 x 1 (longitude,
latitude) 70°S to 70°N grid.

2. For each available CMIP5 realisation, we computed and subtracted the ‘ZOSTOGA’
preindustrial control (piControl) run drift from the Historical realisation’s ‘ZOSTOGA’
field; drift was computed as a linear least-squares fit over the concurrent time
period of the piControl and Historical simulations, i.e. from the time period the
Historical run branches off from the source piControl (typically between years 1850-
1870) through 2004.

3. Finally, ‘Z0S’ and the adjusted ‘ZOSTOGA' fields were added to obtain the full
dynamic and steric sea level change fields. Linear least-square trends were then
calculated over varying time-windows as described below and averaged with equal-
area weighting over the same surface areas as the OHC analysis. If global mean SSH
values were less than 0.5mm, this was reset to equal 0.5mm to prevent model ratios
being overly inflated due to divide by a near-zero error.

Further details regarding the processing of the ‘Z0S’ and ‘ZOSTOGA'’ fields in CMIP5

simulations can be found in Yin et al. (2013) and Landerer et al. (2013). To compare

equal-weighted SSH trends against the volume-integrated OHC trend ratios, we scaled
the Southern and Northern Hemisphere rates by 0.62 and 0.38 respectively, to reflect
the different volumes for the Southern and Northern Hemisphere ocean regions. In this
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way, a value of 0.62 for the Southern Hemisphere/Global SSH trends implies that SSH
trends in the two hemispheres are equal. Hemispheric SSH timeseries provide results
presented in Figure 3A, C.

Period of analysis

Previous work has highlighted discrepancies with observational analyses prior to 1970
(e.g. Gleckler et al., 2012), so to fairly compare models and observations the 35-year
period 1970-2004 was selected which allows direct trend comparison between all but
one observational estimate (DW10) and the Historical simulations of the CMIP5 models.
Splicing of the Historical and RCP simulations to generate 1970-2012 comparable
timeseries was not undertaken, as this would have considerably reduced the number of
individual simulations available for analysis. The DW10 analysis is dependent on the
Argo period (~2003-2008) to resolve the oceans mean spatial structure, and so trends
obtained over the 39-year (1970-2008) analysis were scaled to represent 35-years. To
test for robustness of the forced spatial patterns, future RCP (CMIP5) and SRES (CMIP3)
simulations over 2065-2099 are also assessed and presented alongside results obtained
from the Historical (CMIP5; and 20c3m, CMIP3) experiment. For the CMIP3 models, the
30-year period 1970-1999 was selected (and trends scaled to represent an equivalent
35-year change) as the 20t century simulations terminate in 2000.

Multi-model mean (MMM) calculation

When multiple model simulations were available, a model-ensemble mean was
generated. In plots presenting the multi-model mean (MMM) result, the trend maps
from each model (or model-ensemble if available) were averaged to provide a single
MMM map. Averaging multiple model simulations first before calculating the MMM
ensures that each model contributes equally to the MMM, or to the resolved
distribution (Figures 3, 4, 5, S2a, S2b, S3, S5, S6 and S7). In distribution plots for which
each independent realisation is sampled (Figure S8, S9, S10 and S11) each single
realisation is equally weighted making the assumption that each independent model
realisation is an equally-likely alternative sample.

To prevent outlier simulations from affecting ensemble statistics when using the full
model suite (all experiments presented within each figure), we exclude single model-
ensemble means (Figure 4) or single simulations (Figure S8 and S11) that exceed the
99.9% confidence intervals obtained from the suite. This led to a reduction in model-
ensemble means contributing to Figure 4 (CMIP3 20c3m: 2; CMIP5 Historical: 1; and
experiment bounds [black horizontal lines] CMIP5 RCP26: 1) and to single simulations
contributing to Figure S8 (CMIP3 20c3m: 4; CMIP5 Historical: 4) and Figure S11 (CMIP5
Historical: 1). This in effect reduced the uncertainty presented for experiment spreads
(Figures 4 and S8) and the ensemble distribution (Figure S11). Prior to the 99.9%
confidence intervals being calculated for Figure S8, the HadGEM2-CC.historical.r2ilip1
realisation was removed. This was due to the single simulation having an order of
magnitude larger hemispheric ratio when compared to the full model suite. The outlier
affected the calculation of statistics and so was removed.
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Model drift

The effect of model drift (e.g. Rahmstorf, 1995; Covey et al., 2006; Gleckler et al., 2012;
Sen Gupta et al., 2012, 2013), which is a particularly relevant issue for the deeper ocean,
was assessed. To investigate the role of drift a contemporary 150-year portion of the
piControl simulation (1900-2049) was analysed for the historical simulations in which
data was available, and a linear fit to this timeseries was undertaken at each grid point
in three dimensions. This linear drift estimate was then subtracted grid point by grid
point from the corresponding linear historical trend estimate on the model native grid
before calculation of heat content change was undertaken. A sensitivity study was
undertaken to ascertain how accounting for drift can change the Southern Hemisphere
to Global OHC change ratio, and found that hemispheric ratios are largely insensitive to
drift correction when considering the pooled ensemble average (Figure S10). It was
found that accounting for drift reduced the CMIP5 Historical MMM Southern
Hemisphere to global OHC change ratio by less than 2% (Figure S11), and led to a slightly
larger spread when comparing Southern Hemisphere and Global OHC for this single
experiment (Figure S11). This suggests that the key results of the study are insensitive to
model drift. Specific details on the model simulations used in this analysis are contained
in Tables S1 & S2.
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FIG. S10. The effect of drift-correction on 0-700 dbar ocean heat content (OHC) change for
available CMIPS5 historical simulations for the Northern Hemisphere (A) and Southern
Hemisphere (B) integrated-totals respectively. Dotted lines show percentage differences from
the drift-uncorrected results. Drift correction has a proportionally larger influence on Southern
Hemisphere values, however most of these corrections have a small to negligible effect.
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FIG. S11. The effect of drift-correction on 0-700 dbar ocean heat content (OHC) change for
available CMIP5 Historical simulations. (A) drift-corrected multi-model mean (MMM) and (C)
drift-uncorrected MMM maps and (B) drift-corrected and drift-uncorrected (D) Southern
Hemisphere versus globally-integrated OHC change realisation distributions. The difference
between the drift-corrected (A) minus drift-uncorrected MMM maps (C) is shown enhanced by
10x to show spatial patterns (E).
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8. Supplementary tables
TABLE S1. Observational and CMIP5 model datasets

# OHC Models SSH Models
Hist. drift
Model/Observation 1970-2004 2065-2099 correction 1970-2004
Historical RCP26 RCP45 RCP60 RCP85 piControl Historical
(Obs. version)
1 Smith & Murphy (2007) - 1970- N/A
2004
Domingues et al. (2008) - 1970- 2.0
2004

2 Ishii & Kimoto (2009) — 1970-2004 6.13

3 Durack & Wijffels (2010) - 1970- 1.0
2008

4 Levitus et al. (2012) — 1970-2004 29t April 2013

- AVISO - 1993-2012 -

5 CMIP5 MMM
6 ACCESS1-0 1 - 1 - 1 1 1-2

7 ACCESS1-3 1-3 - 1 - 1 1 1-3

8 BNU-ESM 1 1 1 - 1 - -

9 CCSM4 1-6 1-6 1-6 1-6 1-6 1 1-6
10 CESM1-BGC 1 - 1 - 1 1 1
11 CESM1-CAM5 1-3 1-3 1-3 1-3 1-3 - 1-3
12 CESM1-CAM5-1-FV2 1-4 - - - - - -
13 CESM1-FASTCHEM 1-3 - - - - - 1-3
14 CESM1-WACCM 1-4 2 2 - 2 - 1-4
15 CMCC-CESM 1 - - 1 1 1
16 CMCC-CM 1 - 1 - 1 - 1
17 CMCC-CMS 1 - 1 - 1 1 1
18 CNRM-CM5 1-10 1 1 - 1,2,4,6,10 1 1-10
19 CNRM-CM5-2 1 - - - - - 1
20 CSIRO-Mk3.6.0 1-10 1-10 1-10 1-10 1-10 1 1-10
21 CanESM2 1-5 1-5 1-5 - 1-5 1 1-5
22 EC-EARTH 2,3,5-7,9,10,12,14 8,12 1-3,6-14 - 1-3,6-14 1 2-3,5-7,9-12,14
23 FGOALS-g2 1-3,5 1 - - 1 - 3,5
24 FGOALS-s2 1-3 1 - 1 1-3 1 1-3
25 FIO-ESM 1-3 1-3 - 1-3 1-3 1 1-3
26 GFDL-CM2p1 1-10 - - - - - 1-10
27 GFDL-CM3 1-5 1 1,3,5 - 1 1 -
28 GFDL-ESM2G 1 1 1 1 1 - 1
29 GFDL-ESM2M 1 1 1 1 1 - 1
30 GISS-E2-H 1-6 (p=1-3) 1 (p=1- 1-5 (p=1- 1 (p=1- 1 (p=1-3) 1 (p=1-3) -

3) 3) 3)
31 GISS-E2-H-CC 1 - 1 - 1 1 -
32 GISS-E2-R 1-6 (p=1,2,3,121,122,124- 1 (p=1- 1-6 (p=1- 1 (p=1- 1 (p=1-3) 1 1-6 (p=1-3,121-122,124-
128) 3) 3) 3) 128)
33 GISS-E2-R-CC 1 - 1 - - 1 1
34 HadCM3 1-10 - - - - - -
35 HadGEM2-AO 1 1 1 1 1 - -
36 HadGEM2-CC 1-3 - 1 1-3 1 1-3

37 HadGEM2-ES 1-5 1-4 1-4 1-4 1-4 1 1-5
38 IPSL-CM5A-LR 1-6 1-4 1-4 1 1-4 1 1-6
39 IPSL-CM5A-MR 1-3 1 1 - 1 1 1-3
40 IPSL-CM5B-LR 1 - 1 - 1 1 1
41 MPI-ESM-LR 1-3 1-3 1-3 - 1-3 1 1-3
42 MPI-ESM-MR 1-3 1 1-3 - 1 1 1-3
43 MPI-ESM-P 1-2 - - - - 1 1-2
a4 NorESM1-M 1-3 1 1 1 1 1 1-3
45 NorESM1-ME 1 1 1 1 1 1 1
46 bcc-csm1-1 1-3 1 1 1 1 1 1-3
47 bce-csm1-1-m 1-3 1 1 1 1 - 1-3

- CanCM4 - - - - - - 1-10

- MIROC4h - - - - - 1 1-3

- MIROCS - - - - - 1 1-5

- MIROC-ESM - - - - - - 2

- MIROC-ESM-CHEM - - - - - 1 1
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TABLE S2. CMIP3 model datasets

# OHC Models
Model 1970-1999 2065-2099
20c3m SRESB1 | SRESA1B | SRESA2
CMIP3 MMM

1 bcer_becm2_0 1 1 1 1
2 cccma_cgem3_1 1-5 1-5 1-5 1-5
3 | ccema_cgem3_1_t63 1 1 1 -
4 cnrm_cm3 1 1 1 1
5 csiro_mk3_0 1-3 1 1 1
6 csiro_mk3_5 1-3 1 - 1
7 gfdl_cm2_0 1 1 1 1
8 gfdl_cm2_1 2 - 1 1
9 giss_aom 1-2 1-2 1-2 -
10 giss_model_e_h 1-5 - 1-3 -
11 giss_model_e_r 1-9 1 1-5 1
12 iap_fgoals1l_0_g 1-3 1-3 1-3 -
13 ingv_echam4 1 - 1 1
14 ipsl_cm4 1-2 - 1 -
15 miroc3_2_hires 1 1 1 -
16 | miroc3_2_medres 1-3 1-3 1-3 1-3
17 miub_echo_g 1-3 1-3 1-3 1-3
18 mpi_echam5 1-3 13 1-2 1
19 mri_cgecm2_3_2a 1-5 1-5 1-5 2-5
20 ncar_ccsm3_0 1,3 1-3 2,5,8 1-2,4
21 ncap_pcml 3-4 - 2-4 4
22 ukmo_hadcm3 1-2 1 1 1
23 ukmo_hadgem1 1 - - -

- inmecm3_0 - 1 1 1
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